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INTRODUCTION

Because of the large potential gains related to laminar flow on the swept wings

of supersonic aircraft, recent interest in the application of laminar flow control

(LFC) techniques in the supersonic regime has increased. A supersonic laminar flow

control (SLFC) technology program is currently underway within NASA. The objec-

tive of this program is to develop the data base and design methods that are critical

to the development of laminar flow control technology for application to supersonic

transport aircraft design. Towards this end, the program integrates computational

investigations currently underway at NASA Ames-Moffett and NASA Langley with

flight-test investigations being conducted on the F-16XL at the NASA Ames-Dryden

Research Facility in cooperation with Rockwell International.

The computational goal at NASA Ames-Moffett is to integrate a thin-layer

Reynolds averaged Navier-Stokes flow solver with a stability analysis code. 1 The flow

solver would provide boundary-layer profiles to the stability analysis code which in

turn would predict transition on the F-16XL wing. To utilize the stability analysis

codes, reliable boundary-layer data is necessary at off-design cases. Previously,

much of the prediction of boundary-layer transition has been been accomplished

through the coupling of boundary-layer codes with stability theoryfl ,a However,

boundary-layer codes may have difficulties at high Reynolds numbers, of the order

of 100 million, and with the current complex geometry in question. Therefore, a

reliable code which solves the thin-layer Reynolds averaged Navier-Stokes equations
is needed.

The objective of the current research is two-fold. The first objective is method

verification, via comparisons of computations with experiment, of the reliability

and robustness of the code. To successfully implement LFC techniques to the F-

16XL wing, the flow about the leading edge must be maintained as laminar flow.

Therefore, the second objective is to focus on a series of numerical simulations

with different values of a and Reynolds numbers. The purpose of the simulations

is to study their effects on the two main factors which precipitate transition to

turbulence at leading edges of highly swept wings (e.g. "spanwise contamination"

and "crossflow instability"). The bulk of this presentation will focus on the first

stated objective.
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CNS BACKGROUND

The Compressible Navier-Stokes (CNS) code is utilized in this research. The

CNS code is a time-dependent Navier-Stokes solver implemented in a zonal method-

ology. The zonal approach allows grids for complex configurations to be generated

in topologically simple pieces and patched together to form the global mesh. In

addition to simplifying the grid generation process, the zonal approach enhances

computational efficiency by allowing zones to involve different physical models so

that only the complexity necessary for the local flow field is assumed. The zonal

method also gives the user flexibility in allowing different convergence strategies to
be used in different zones.

Characteristics of the integration scheme ARC3D are given. The algorithm

uses central-differencing in all three directions. Second and fourth order artifi-

cial dissipation is added both explicitly and implicitly for stability considerations.

The inversion process involves inverting only scalar penta-diagonals. The Baldwin-

Lomax model is used to model turbulence viscosity in the thin-layer Reynolds-

averaged Navier-Stokes equations. 4

CNS CODE CHARACTERISTICS

ZONAL SCHEME

- SIMPLIFY GRID GENERATION FOR COMPLEX GEOMETRIES

- COMPUTATIONAL FLEXIBILITY AND EFFICIENCY

ARC3D ALGORITHM

- CENTRAL-DIFFERENCED SCHEME IN ALL THREE DIRECTIONS

- 2ND AND 4TH ORDER EXPLICIT AND IMPLICIT DISSIPATION

- BALDWIN-LOMAX TURBULENCE MODEL
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GEOMETRY AND GRID

The geometry used for the SLFC program is the F-16XL configuration. It is

basically an F-16A with the original wing replaced with a double delta-wing having

a sweep angle of 70 °, forward of the wing-break. The figure shows a planform view

of the surface grid used in the computations. The surface and flow field grids were

graciously provided by Dr. C. J. Woan of Rockwell International. Not shown, but

modeled, are the inlet, diverter, and environmental control system on the underside

of the geometry. Instrumented on the actual flight configuration is a fitted glove

on the upper surface of the wing. The glove surface contains tiny holes, created

by laser beams to provide suction as a means of maintaining laminar flow. The

approximate location of the glove geometry is shown in the figure.
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SYMMETRY PLANE PRESSURE CONTOURS

The numerical simulation was conducted with flow conditions approximately

matching flight conditions at Moo = 1.6, a = 2.0 ° and ReL = 116 million. The

Reynolds number is based on the fuselage length, which is approximately 550 inches.

Nineteen zones were used for the computation with a total of one million grid

points. The computation required approximately 2500 iterations to drop the initial

L2-norm in each zone by three orders of magnitude. On the NASA supercomputer,

this required approximately 13 hours of cpu time. The figure illustrates the pressure

contours on the symmetry planes. Shocks can be seen at the nose, canopy and lip

of the inlet on the geometry. What can also be noted is the smoothness of the

contours, even though they are traversing different zones. An expansion wave at

the top of the canopy, as well as a recompression shock at the back of the canopy,

can also be seen. These regions cause adverse pressure gradients which can cause

the flow to separate.
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SURFACE PRESSURE MAP

The surface pressure map is illustrated in this figure. Again, the "hot spots"

(light shaded regions) at the nose and front of the canopy are noted. The low

pressure region (dark shaded regions) at the top of the canopy is also seen and is

due to the expansion of the flow about the canopy. A large low pressure region is

also seen on the wing of the geometry. It will be shown that this region will have a
large influence on the flow pattern in this area.
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SIMULATED OIL FLOW PATTERN

Oil flow patterns on the geometry are simulated by releasing and restricting

particles to one grid point off the surface and tracking their subsequent journey

downstream. As can be seen, a separation region occurs due to the recompression

shock at the back of the canopy, however it quickly reattaches downstream. The

low pressure region at the top of the canopy causes an upwash of the flow about

the fuselage-strake region. Also the flow just off the symmetry plane near the back

of the fuselage is seen to be pulled down onto the wing due to the aforementioned

low pressure on the wing. This same low pressure also causes the flow coming from

the leading edge to head slightly inboard before proceeding downstream.

• r ....
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PRESSURE COEFFICIENT COMPARISIONS

Computed pressure coefficients are compared to inflight data obtained from

NASA Ames-Dryden. These are given at two span stations. Tile inboard span

station (72 inches from the symmetry plane) corresponds to the location just in-

board of the laminar flow control glove. Since the computational grid lines did not

correspond to constant span stations, cubic spllne interpolation was necessary to

compute the flow variables at the appropriate span stations. The solid lines in-

dicate the computations and the rectangles indicate experiment. For the inboard

station, pressure taps were instrumented up to 25 percent of local chord, while out-

board taps were instrumented up to 40 percent of local chord. The computations

at the inboard station compare fairly well with the experimental data, with a slight

underprediction. The slight underprediction occurs at 2-9 percent of chord. The

computations are in excellent agreement with experiment from 10 percent of chord

onward, and compare fairly well at the leading edge. At the outboard station, the

computations consistently underpredict the experiment over the entire chord. How-

ever, there may be twist at this span station in the actual geometry which has not

been accounted for in the computational model.

M -- 1.6, O_= 2.0 °, ReL= 1 16 million

COMPUTATIONS
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COMPUTATIONAL COMPARISONS OF PRESSURE COEFFICIENT

In the previous result, the computations underpredict the experimental pres-

sure coefficients, especially between 2-9 percent of local chord at the inboard station.

A comparison of the numerical results obtained by the CNS code and that due to a

completely different code, called the USA-RG3 code s developed by Rockwell Inter-

national, was conducted using the same grid. As can be noted, there is very good

agreement between the two numerical results at the inboard station. In particular,

where the GNS results were quite different from experiment in the 2-9 percent local

chord region, there is excellent agreement obtained there between the two different

codes.
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VELOCITY PROFILES AT THE INBOARD STATION

An examination of the velocity profiles is conducted along the inboard station at

different chordwise locations. The y-axis is the vertical height, in inches, above the

geometry. The streamwise component of velocity is discussed first. The boundary

layers all exhibit the standard expected profile. The boundary layer near the leading

edge is very thin relative to the downstream profiles. At x/c = 3.2 percent the

boundary-layer maintains a fairly constant thickness downstream to about x/c = 4.7

percent. The boundary-layer thickness near the leading edge is approximately .015
inches.

From examining the crossflow component it can be noted that the maximum

crossflow occurs near the leading edge (x/c = .7 percent). At x/c = 2.2 percent,

and downstream, the crossflow velocity has decreased dramatically. From x/c = 3.2

percent, and downstream, the crossflow velocity decreases continually, but not sig-

nificantly. The inflection point of the crossflow velocity profile increases in height

for the first three chordwise locations and then appears to decrease.
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ATTACHMENT LINE LOCATIONS

The following results map the movement of the attachment line location from

the inboard location of the wing to the outboard location. The experimental data

points exist only at the inboard and outboard portion of the glove. The vertical

axis indicates the position of the attachment point, either on the upper surface,

(positive x/c) or on the lower surface (negative x/c). The leading edge itself is

at x/c = 0.0. There are twenty equally-spaced interpolated span stations between
the inboard and outboard stations. The stagnation point, at each span station,

was determined by finding the grid point corresponding to the maximum pressure

coefficient and is consistent with the experimental determination of the stagnation

point. The procedure accounts for the discontinuities in the plot. The computations

seem to indicate that the stagnation point is right on the leading edge of the inboard

station, then goes below the leading edge at 75 inches and stays on the lower portion

of the wing. At about 110 inches, the stagnation point returns to the leading edge

of the wing. The experimental data points indicate the stagnation points slightly

below the leading edge at both inboard and outboard stations. Other computational

results s indicate the same trend as the current computational results.
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PRESSURE COEFFICIENT ALONG ATTACHMENT LINE

The following results reflect the pressure coefficient at the stagnation point

from the inboard to outboard station. There is a dip in the pressure coefficient

at a span station of about 74 inches. This location is about two inches away from

where the inboard portion of the glove begins. The pressure coefficient then shows a

favorable pressure gradient along the attachment line and levels off at a span station

of about 110 inches. The last data point indicates that the pressure coefficient may
take another dip here, which interestingly occurs close to the location where the

glove ends. This result indicates that there may be some effect of how the glove is
faired into the original wing.

0.20

0.18

0.16

t_
rO 0.14

0.12

0.10-

ATTACHMENT LINE Cp

............................................i............................................."..........................................i............................................._..........................................

0.08

70 80 90 100 110 120

SPAN STATION IN INCHES

1904



FLOW SOLVER - STABILITY CODE COUPLING

The Navier-Stokes code is currently coupled to the stability code in the fol-

lowing manner. The pressure distribution at various span stations from inboard

to outboard is read into the boundary-layer code. The boundary-layer code uses a

conical flow assumption in computing its boundary-layer data based on the given

pressure distributions. This boundary-layer data is then read into the stability code.

Depending on the N-factor value prescribed for the determination of transition, the

stability code will determine the x/c location of transition for each span station.

Future work will be performed to couple the Navier-Stokes solution from the CNS

code directly into the stability code.

CNS CODE

i

(SURFAC cP

BOUNDARY-LAYER DATA)
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HSRP CODE VALIDATION

A composite result is displayed which illustrates the end product of the tran-

sition predicted by the CNS - COSAL code coupling. An N-factor equal to 10 was

used in the COSAL code. The white area on the F-16XL wing designates the glove

location. The box illustrates an expanded view of a small section of the glove. At

a span station of 89 inches, transition occurs at about 1.7 inches (.6 percent of
x/c) from the leading edge. Slightly outboard of that transition occurs at about

2.2 inches (.9 percent of x/c). It can be noted that for this case, transition occurs

very close to the leading edge which is consistent with experimental findings. The

corresponding Cp for the outboard location is also illustrated. The leading edge
geometry of the wing is also indicated below the Cp graphic.

HSRP Code Validation
Ames FluTd Mechanlcs Laboratory

Ames Applied Computational Fluids Branch

• N-S Code for basic flow

• COSAL code for translflon (N=IO)

• Passive Glove
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SUMMARY AND FUTURE DIRECTIONS

In summary, the CNS code has been used to predict the flow about the F-16XL

in supersonic flight. Comparisons were made between the numerical and experimen-

tal pressure coefficients with good agreement between the two. Further numerical

comparisons were conducted with the results from another Navier-Stokes code. Ve-

locity profiles, for both streamwise and crossflow components, were analyzed at the

inboard station for various x/c values. A mapping of the attachment line from the

inboard to the outboard area of the glove was conducted. Finally, the numerical

results from the CNS code were used in the COSAL code to predict transition.

SUMMARY

COMPUTED NUMERICAL SOLUTION OF THE FLOW FIELD ABOUT THE

F-16XL IN SUPERSONIC FLIGHT

-COMPARISONS OF THE NUMERICAL SOLUTION WITH IN-FLIGHT

EXPERIMENTAL DATA WAS CONDUCTED

-VELOCITY PROFILES FOR INBOARD STATION ANALYZED

-MAPPING OF ATTACHMENT LINE LOCATION WAS CONDUCTED

CNS CODE COUPLED TO COSAL CODE

-TRANSITION PREDICTED ON THE GLOVE PORTION OF THE WING

FUTURE DIRECTIONS

CNS CODE

-CONTINUE VALIDATION OF THE CODE

-IMPLEMENT SUCTION BOUNDARY CONDITIONS

CNS/COSAL CODE

-MAP TRANSITION LINE AND VALIDATE WITH IN-FLIGHT DATA

-ADD CAPABILITY TO UTILIZE NAVIER-STOKES SOLUTION

DIRECTLY

1907



REFERENCES _. - - _ -

1. Malik, M.R., "COSAL - A Black Box Compressible Stability Analysis Code for

Transition Prediction in Three-Dimensional Boundary-Layers," NASA CR-165925,
1982.

2. Mack, L.M., "On The Stability of the Boundary Layer on a Transonic Swept

Wing," AIAA Paper No. 79-0264.

3. Mack, L.M., "Transition Prediction And Linear Stability Theory in Laminar-

Turbulent Transition," AGARD Conference Proceedings No. 224, pp. 1-1 to 1-22,
1977.

4. Flores, J. and Chaderjian, N.M., "Zonal Navier-Stokes Methodology for Flow

Simulation About A Complete Aircraft," Journal of Aircraft, Vol. 27, No.7, July

1990, pp. 583-590 ....

5. Woan, C.J., Gingrich, P.B., and George, M.W., "CFD Validation of a Supersonic

Laminar Flow Control Concept," AIAA Paper No. 91-0188.

1908


